How To Bereken Gesentreer Bewegende Gemiddelde Trend


Wanneer die berekening van 'n lopende bewegende gemiddelde, die plasing van die gemiddelde in die middel tydperk sinvol In die vorige voorbeeld het ons bereken die gemiddeld van die eerste 3 tydperke en sit dit langs tydperk 3. Ons kan die gemiddelde geplaas in die middel van die tyd interval van drie tydperke, dit is, langs tydperk 2. dit werk goed met vreemde tydperke, maar nie so goed vir selfs tydperke. So waar sou ons plaas die eerste bewegende gemiddelde wanneer M 4 Tegnies, sou die bewegende gemiddelde op t 2.5, 3.5 val. Om hierdie probleem wat ons glad Mas using 2. So glad ons die stryk waardes As ons gemiddeld 'n gelyke getal terme te vermy, moet ons die stryk waardes glad Die volgende tabel toon die resultate met behulp van M 4.Moving Gemiddelde Hierdie voorbeeld wat jy leer hoe om die bewegende gemiddelde van 'n tydreeks in Excel te bereken. 'N bewegende avearge gebruik te stryk onreëlmatighede (pieke en dale) om maklik tendense herken. 1. In die eerste plek kan 'n blik op ons tyd reeks. 2. Klik op die blad Data, kliek Data-analise. Nota: cant vind die Data-analise knoppie Klik hier om die analise ToolPak add-in te laai. 3. Kies bewegende gemiddelde en klik op OK. 4. Klik op die insette Range boks en kies die reeks B2: M2. 5. Klik op die boks interval en tik 6. 6. Klik in die uitset Range boks en kies sel B3. 8. Teken 'n grafiek van hierdie waardes. Verduideliking: omdat ons die interval stel om 6, die bewegende gemiddelde is die gemiddeld van die vorige 5 datapunte en die huidige data punt. As gevolg hiervan, is pieke en dale stryk uit. Die grafiek toon 'n toenemende tendens. Excel kan nie bereken die bewegende gemiddelde vir die eerste 5 datapunte, want daar is nie genoeg vorige datapunte. 9. Herhaal stappe 2 tot 8 vir interval 2 en interval 4. Gevolgtrekking: Hoe groter die interval, hoe meer die pieke en dale is glad nie. Hoe kleiner die interval, hoe nader die bewegende gemiddeldes is om die werklike data punte. Hou jy van hierdie gratis webwerf Deel asseblief hierdie bladsy op GoogleMoving Gemiddeldes: Wat is dit vir die mees gewilde tegniese aanwysers, bewegende gemiddeldes word gebruik om die rigting van die huidige tendens meet. Elke tipe bewegende gemiddelde (algemeen in hierdie handleiding as MA geskryf) is 'n wiskundige gevolg dat word bereken deur die gemiddeld van 'n aantal van die verlede datapunte. Sodra bepaal, die gevolglike gemiddelde is dan geplot op 'n grafiek, sodat die handelaars om te kyk na reëlmatige data eerder as om te fokus op die dag-tot-dag prysskommelings wat inherent in alle finansiële markte is. Die eenvoudigste vorm van 'n bewegende gemiddelde, gepas bekend as 'n eenvoudige bewegende gemiddelde (SMA), word bereken deur die rekenkundige gemiddelde van 'n gegewe stel waardes. Byvoorbeeld, 'n basiese 10-dae - bewegende gemiddelde wat jy wil voeg tot die sluiting pryse van die afgelope 10 dae en dan verdeel die gevolg van 10. In Figuur 1 te bereken, die som van die pryse vir die afgelope 10 dae (110) is gedeel deur die aantal dae (10) om te kom op die 10-dae gemiddelde. As 'n handelaar wil graag 'n 50-dag gemiddelde sien in plaas daarvan, sal dieselfde tipe berekening gemaak word, maar dit sal die pryse sluit oor die afgelope 50 dae. Die gevolglike gemiddelde hieronder (11) in ag neem die afgelope 10 datapunte om handelaars 'n idee van hoe 'n bate relatiewe is geprys om die afgelope 10 dae te gee. Miskien is jy wonder hoekom tegniese handelaars noem hierdie hulpmiddel 'n bewegende gemiddelde en nie net 'n gewone gemiddelde. Die antwoord is dat as nuwe waardes beskikbaar is, moet die oudste datapunte laat val van die stel en nuwe data punte moet kom om dit te vervang. So, is die datastel voortdurend in beweging om rekenskap te gee nuwe data soos dit beskikbaar raak. Hierdie metode van berekening verseker dat slegs die huidige inligting word verreken. In Figuur 2, sodra die nuwe waarde van 5 word by die stel, die rooi boks (wat die afgelope 10 datapunte) na regs beweeg en die laaste waarde van 15 laat val van die berekening. Omdat die relatief klein waarde van 5 die hoë waarde van 15 vervang, sou jy verwag om die gemiddeld van die datastel afname, wat dit nie sien nie, in hierdie geval van 11 tot 10. Wat Moet Bewegende Gemiddeldes lyk as die waardes van die MA is bereken, hulle geplot op 'n grafiek en dan gekoppel aan 'n bewegende gemiddelde lyn te skep. Hierdie buig lyne is algemeen op die kaarte van tegniese handelaars, maar hoe dit gebruik word kan drasties wissel (meer hieroor later). Soos jy kan sien in Figuur 3, is dit moontlik om meer as een bewegende gemiddelde om enige term voeg deur die aanpassing van die aantal tydperke gebruik word in die berekening. Hierdie buig lyne kan steurende of verwarrend lyk op die eerste, maar jy sal groei gewoond aan hulle soos die tyd gaan aan. Die rooi lyn is eenvoudig die gemiddelde prys oor die afgelope 50 dae, terwyl die blou lyn is die gemiddelde prys oor die afgelope 100 dae. Nou dat jy verstaan ​​wat 'n bewegende gemiddelde is en hoe dit lyk, goed in te voer 'n ander tipe van bewegende gemiddelde en kyk hoe dit verskil van die voorheen genoem eenvoudig bewegende gemiddelde. Die eenvoudige bewegende gemiddelde is uiters gewild onder handelaars, maar soos alle tegniese aanwysers, dit het sy kritici. Baie individue argumenteer dat die nut van die SMA is beperk omdat elke punt in die datareeks dieselfde geweeg, ongeag waar dit voorkom in die ry. Kritici argumenteer dat die mees onlangse data is belangriker as die ouer data en moet 'n groter invloed op die finale uitslag het. In reaksie op hierdie kritiek, handelaars begin om meer gewig te gee aan onlangse data, wat sedertdien gelei tot die uitvinding van die verskillende tipes van nuwe gemiddeldes, die gewildste van wat is die eksponensiële bewegende gemiddelde (EMA). (Vir verdere inligting, sien Basics gelaaide bewegende gemiddeldes en Wat is die verskil tussen 'n SMA en 'n EMO) Eksponensiële bewegende gemiddelde Die eksponensiële bewegende gemiddelde is 'n tipe van bewegende gemiddelde wat meer gewig gee aan onlangse pryse in 'n poging om dit meer ontvanklik maak om nuwe inligting. Leer die ietwat ingewikkeld vergelyking vir die berekening van 'n EMO kan onnodige vir baie handelaars wees, aangesien byna al kartering pakkette doen die berekeninge vir jou. Maar vir jou wiskunde geeks daar buite, hier is die EMO vergelyking: By die gebruik van die formule om die eerste punt van die EMO bereken, kan jy agterkom dat daar geen waarde beskikbaar is om te gebruik as die vorige EMO. Hierdie klein probleem opgelos kan word deur die begin van die berekening van 'n eenvoudige bewegende gemiddelde en die voortsetting van die bogenoemde formule van daar af. Ons het jou voorsien van 'n monster spreadsheet wat die werklike lewe voorbeelde van hoe om beide 'n eenvoudige bewegende gemiddelde en 'n eksponensiële bewegende gemiddelde te bereken sluit. Die verskil tussen die EMO en SMA Nou dat jy 'n beter begrip van hoe die SMA en die EMO bereken word, kan 'n blik op hoe hierdie gemiddeldes verskil. Deur te kyk na die berekening van die EMO, sal jy agterkom dat meer klem gelê op die onlangse data punte, maak dit 'n soort van geweegde gemiddelde. In Figuur 5, die nommers van tydperke wat in elk gemiddeld is identies (15), maar die EMO reageer vinniger by die veranderende pryse. Let op hoe die EMO het 'n hoër waarde as die prys styg, en val vinniger as die SMA wanneer die prys daal. Dit reaksie is die hoofrede waarom so baie handelaars verkies om die EMO gebruik oor die SMA. Wat doen die verskillende dae gemiddelde bewegende gemiddeldes is 'n heeltemal aanpas aanwyser, wat beteken dat die gebruiker vrylik kan kies watter tyd raam wat hulle wil wanneer die skep van die gemiddelde. Die mees algemene tydperke wat in bewegende gemiddeldes is 15, 20, 30, 50, 100 en 200 dae. Hoe korter die tydsduur wat gebruik word om die gemiddelde te skep, hoe meer sensitief sal wees om die prys veranderinge. Hoe langer die tydsverloop, hoe minder sensitief, of meer reëlmatige, die gemiddelde sal wees. Daar is geen regte tyd raam te gebruik wanneer die opstel van jou bewegende gemiddeldes. Die beste manier om uit te vind watter een werk die beste vir jou is om te eksperimenteer met 'n aantal verskillende tydperke totdat jy die een wat jou strategie pas te vind. Bewegende gemiddeldes: Hoe om dit te gebruik Skryf Nuus om te gebruik vir die nuutste insigte en ontleding Dankie vir jou inskrywing om Investopedia insigte - Nuus om Use. What is die verskil tussen bewegende gemiddelde en gesentreerdheid bring bewegende gemiddelde Beste Antwoord: bewegende gemiddeldes Die bewegende gemiddelde was waarskynlik die eerste tegniese studie gebruik deur handelaars en beleggers om die tendens van die mark te bepaal. Die bewegende gemiddelde stryk prysskommelings deur gemiddeld 'n geselekteerde aantal pryse. Dit verwyder wat ingenieurs verwys na as 'n hoë-frekwensie noisequot van die data, en van die handelaars oogpunt, die smoothing skep 'n studie wat gebruik kan word as 'n definisie vir die tendens. Die gemiddelde prys word op die prys grafiek saam met die prys bars. Daar is verskillende maniere om die gemiddelde prys te bereken, insluitend eenvoudige, eksponensiële, geweeg, en stryk berekeninge. CQG dra twee studies, die bewegende gemiddelde en die bewegende gemiddelde kruis, wat albei kan geformateer word om die handelaars belangstelling en 'n deel van voorwaardes, persoonlike studie, waarskuwings, en handel stelsels. Eenvoudige bewegende gemiddelde (SMA) Die formule vir 'n vyf-dag SMA is: (Close () Close () - 1 Close () - 2 Close () - 3 Close () - 4) / 5 Vyf SLUIT begin met die huidige en uit te werk om die noue vier dae gelede is opgesom en gedeel deur vyf. In hierdie geval, is elke sluitingsprys geweeg dieselfde (1/5). Daarom het die noue vandag dieselfde impak in die berekening as die noue vier dae gelede. As vandag se noue was dramaties anders as die noue vier dae gelede, miskien uit 'n tempo van 'n handels-reeks, die SMA sal die prys aksie lag as gevolg van hierdie gelyke gewig of gelyk belangrikheid van die individu sluitingstyd pryse oor die afgelope vyf dae. Hoe langer die Terugblik tydperk gebruik word, hoe meer beduidende rol dit neem. Eksponensieel Reëlmatige bewegende gemiddelde (ESMA) 'n eksponensieel stryk bewegende gemiddelde (ESMA) gebruik net die huidige sluitingsprys, die vorige waarde van die ESMA, en 'n glad konstante (SC) vir die berekening: ESMA () SCClose () ((1- SC) ESMA () - 1) vandag se ESMA is die som van vandag se sluiting prys vermenigvuldig met die glad konstante en yesterdays ESMA vermenigvuldig met 1 minus die smoothing konstante. Die smoothing konstante kan enige desimale getal tussen nul en 1. Handelaars gebruik 'n formule vir wees die glad konstant 'n eenvoudige bewegende gemiddelde benader, 2 / (n 1) waar n die Terugblik tydperk gebruik word in 'n SMA. As ons 'n 5, dan 2 / (n 1) 2/6 0,3333. Die formule vir die vyfdaagse ESMA: ESMA () 0.3333Close () (1-0,3333) ESMA () - 1 Om maklik te sien hoe die formule vir die smoothing konstante by benadering 'n eenvoudige bewegende gemiddelde, is van mening dat 'n een-dag SMA is eenvoudig die sluitingsprys en as ons gebruik n 1 in die ESMA, die smoothing konstante is 2 / (11) 2/2 1. die ESMA is dan: Verder daarop dat die ESMA is die som van die aangepaste huidige sluitingsprys en die aangepaste vorige ESMA. Dit lei tot 'n verandering in die rigting onmiddellik deur die ESMA as die sluitingsprys is bo of onder die ESMA vir die eerste keer. Met ander woorde, die eerste dag van die noue is bo 'n val ESMA die ESMA sal laat opdaag op daardie dag. Die ESMA nie lag die verandering in die rigting in die mark soos 'n SBG kan. Baie keer, sal 'n SMA voortgaan om tendens in dieselfde rigting, afhangende van die sluiting pryse in die Terugblik tydperk ten spyte van die huidige sluitingsprys van rigting verander. A gesentreer gemiddelde word bereken dieselfde as die eenvoudige bewegende gemiddelde, behalwe die eerste punt van die gesentreerde gemiddelde is geplot in die middel bar van die gespesifiseerde Terugblik tydperk. Byvoorbeeld, sou die eerste punt vir 'n vyf-bar gesentreer gemiddelde getrek word op die derde bar terug. In die geval van 'n gesentreerde gemiddelde met 'n ewe getal vir die Terugblik tydperk, sal die eerste punt getrek word by die bar onmiddellik aan die regterkant van die sentrum bar.6.2 bewegende gemiddeldes ma 40 elecsales, sodat 5 41 In die tweede kolom van hierdie tafel, is 'n bewegende gemiddelde van orde 5 getoon, die verskaffing van 'n skatting van die tendens-siklus. Die eerste waarde in hierdie kolom is die gemiddeld van die eerste vyf Waarnemings (1989-1993) die tweede waarde in die 5-MA kolom is die gemiddeld van die waardes 1990-1994 en so aan. Elke waarde in die 5-MA kolom is die gemiddeld van die waarnemings in die tydperk van vyf jaar gesentreer op die ooreenstemmende jaar. Daar is geen waardes vir die eerste twee jaar of laaste twee jaar, want ons hoef nie twee waarnemings aan weerskante. In die formule hierbo, kolom 5-MA bevat die waardes van hoed met K2. Om te sien wat die tendens-siklus skatting lyk, stip ons dit saam met die oorspronklike data in figuur 6.7. plot 40 elecsales, hoof quotResidential elektrisiteit salesquot, ylab quotGWhquot. XLab quotYearquot 41 lyne 40 MA 40 elecsales, 5 41. Kol quotredquot 41 Let op hoe die tendens (in rooi) is gladder as die oorspronklike data en vang die grootste beweging van die tydreeks sonder al die geringe fluktuasies. Die bewegende gemiddelde metode nie skattings van T toelaat waar t is baie naby aan die einde van die reeks vandaar die rooi lyn nie uit te brei na die kante van die grafiek aan weerskante. Later sal ons meer gesofistikeerde metodes van die tendens-siklus skatting wat doen toelaat skattings naby die eindpunte gebruik. Die einde van die bewegende gemiddelde bepaal die gladheid van die tendens-siklus skatting. In die algemeen, 'n groter orde beteken 'n gladder kurwe. Die volgende grafiek toon die effek van die verandering van die orde van die bewegende gemiddelde vir die residensiële verkope elektrisiteit data. Eenvoudige bewegende gemiddeldes soos hierdie is gewoonlik van vreemde orde (bv 3, 5, 7, ens) Dit is sodat hulle is simmetries: in 'n bewegende gemiddelde van orde m2k1, daar is k vroeër waarnemings, k later waarnemings en die Midde-waarneming wat gemiddeld. Maar as m selfs was, sou dit nie meer simmetriese wees. Bewegende gemiddeldes van bewegende gemiddeldes Dit is moontlik om 'n bewegende gemiddelde van toepassing op 'n bewegende gemiddelde. Een van die redes hiervoor is om 'n nog-orde bewegende gemiddelde simmetriese maak. Byvoorbeeld, kan ons 'n bewegende gemiddelde van orde 4 neem, en dan nog 'n bewegende gemiddelde van orde 2 van toepassing is op die resultate. In Tabel 6.2, is dit gedoen en vir die eerste paar jaar van die Australiese kwartaallikse bier produksie data. BEER2 LT venster 40 ausbeer, begin 1992 41 ma4 LT ma 40 BEER2, sodat 4. sentrum ONWAAR 41 ma2x4 LT ma 40 BEER2, sodat 4. sentrum WAAR 41 Die notasie 2times4-MA in die laaste kolom beteken 'n 4-MA gevolg deur 'n 2-MA. Die waardes in die laaste kolom word verkry deur die neem van 'n bewegende gemiddelde van orde 2 van die waardes in die vorige kolom. Byvoorbeeld, die eerste twee waardes in die 4-MA kolom is 451,2 (443.410.420.532) / 4 en 448,8 (410.420.532.433) / 4. Die eerste waarde in die 2times4-MA kolom is die gemiddeld van die twee: 450,0 (451.2448.8) / 2. Wanneer 'n 2-MA volg op 'n bewegende gemiddelde van al orde (soos 4), is dit bekend as 'n gesentreerde bewegende gemiddelde van orde 4. Dit is omdat die resultate is nou simmetriese. Om te sien dat dit die geval is, kan ons die 2times4-MA soos volg skryf: begin hoed amp frac Bigfrac (J J J J) frac (J J J J) Big amp frac y frac14y frac14y frac14y frac18y. Uiteindelik gaan dit nou 'n geweegde gemiddelde van waarnemings, maar dit is simmetriese. Ander kombinasies van bewegende gemiddeldes is ook moontlik. Byvoorbeeld 'n 3times3-MA word dikwels gebruik, en bestaan ​​uit 'n bewegende gemiddelde van orde 3 gevolg deur 'n ander bewegende gemiddelde van orde 3. In die algemeen, moet 'n gelyke orde MA word gevolg deur 'n nog bevel MA dit simmetriese maak. Net so moet 'n vreemde orde MA word gevolg deur 'n vreemde orde MA. Skatte van die tendens-siklus met seisoenale data Die mees algemene gebruik van gesentreer bewegende gemiddeldes is in die beraming van die tendens-siklus van seisoenale data. Oorweeg die 2times4-MA: hoed frac y frac14y frac14y frac14y frac18y. Wanneer dit toegepas word om kwartaalliks data, word elke kwartaal van die jaar gegee gelyke gewig as die eerste en laaste terme van toepassing op dieselfde kwartaal in agtereenvolgende jare. Gevolglik sal die seisoenale variasie word gemiddeld uit en die gevolglike waardes van hoed t sal min of oorblywende geen seisoenale variasie het. 'N soortgelyke effek sal verkry word met behulp van 'n 2times 8-MA of 'n 2times 12-MA. In die algemeen, 'n 2times m-MA is gelykstaande aan 'n geweegde bewegende gemiddelde van orde M1 met alle waarnemings wat gewig 1 / m, behalwe vir die eerste en laaste terme wat gewigte neem 1 / (2 miljoen). So as die seisoenale tydperk is selfs en orde m, gebruik 'n 2times m-MA aan die tendens-siklus te skat. As die seisoenale tydperk is vreemd en orde m, gebruik 'n m-MA aan die tendens siklus skat. In die besonder, kan 'n 2times 12-MA gebruik word om die tendens-siklus van maandelikse data te skat en 'n 7-MA gebruik kan word om die tendens-siklus van die daaglikse data te skat. Ander keuses vir die einde van die MA sal gewoonlik lei tot tendens-siklus skattings besmet deur die seisoenaliteit in die data. Voorbeeld 6.2 Elektriese toerusting vervaardiging Figuur 6.9 toon 'n 2times12-MA toegepas op die elektriese toerusting bestellings indeks. Let daarop dat die gladde lyn toon geen seisoenaliteit dit is byna dieselfde as die tendens-siklus word in Figuur 6.2 wat na raming met behulp van 'n veel meer gesofistikeerde metode as bewegende gemiddeldes. Enige ander keuse vir die einde van die bewegende gemiddelde (behalwe vir 24, 36, ens) sou gelei tot 'n gladde lyn wat 'n paar seisoenale skommelinge toon. plot 40 elecequip, ylab quotNew bestellings indexquot. Kol quotgrayquot, hoof quotElectrical toerusting vervaardiging (Eurogebied) quot 41 lyne 40 MA 40 elecequip, sodat 12 41. Kol quotredquot 41 Geweegde bewegende gemiddeldes Kombinasies van bewegende gemiddeldes lei tot geweegde bewegende gemiddeldes. Byvoorbeeld, die 2x4-MA hierbo bespreek is gelykstaande aan 'n geweegde 5-MA met gewigte deur frac, frac, frac, frac, frac. In die algemeen kan 'n geweegde m-MA geskryf word as hoed t som k AJ y, waar k (m-1) / 2 en die gewigte word deur 'n, kolle, AK. Dit is belangrik dat die gewigte al som tot een en dat hulle simmetriese sodat 'n aj. Die eenvoudige m-MA is 'n spesiale geval waar al die gewigte is gelyk aan 1 / m. 'N Groot voordeel van geweegde bewegende gemiddeldes is dat hulle toegee n gladder skatting van die tendens-siklus. In plaas van waarnemings betree en verlaat die berekening op volle gewig, is hul gewigte stadig toegeneem en dan stadig afgeneem wat lei tot 'n gladder kurwe. Sommige spesifieke stelle gewigte is wyd gebruik word. Sommige van hierdie word in Tabel 6.3.

Comments